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Abstract—One of the first approaches to proposed to prevent
automated attacks on Internet were the Human Interactive Proofs
(HIPs). Since their invention, a variety of designs have been
proposed, yet most of them have been successfully attacked. In
this paper we focus on a new HIP, based on a puzzle solving
scheme, created to increase both security and usability: the Capy
CAPTCHA. We have analyzed its design, finding some important
flaws. Based on them, we propose a low-cost, side-channel attack.
Initial results show that the attack is able to break Capy with a
61% success ratio.

I. INTRODUCTION

The abuse of web-based services is still a common activity
on the Internet. These abuses take form by creating computer
programs able to exploit those services much faster and
many more times than humans. The first approach to solve
this problem proposed several theoretical methods to prevent
such attacks [9], under the general idea of using problems
considered to be hard for computers, but easy for humans.
Instances of these problems were used as remotely delivered
tests, also called Human Interactive Proofs (HIPs). A few years
later, CMU Researchers improved this idea with a program
to tell apart bots from humans. They listed some desirable
properties such a program should have. The term CAPTCHA
was coined by them, and the problem improved its visibility
in the academic world. During the 2000s decade there was
abundant research on new techniques ([7], [12]) enabling the
breaking of text-based word-image CAPTCHAs. All of these
attacks made clever use of some very simple properties of
the challenge images [2]. Added to some design flaws, this
allowed attackers to read them. As a response, some companies
hardened HIPs making them all too difficult [5]. At the same
time many researchers started considering the broader AI
problem of vision and image analysis ([10], [11], [4], [3]),
but their proposals had either usability or practical problems,
or were broken ([6], [12]). Currently there are new CAPTCHA
proposals that try to find a sweet spot between being easy (and
enjoyable) for humans, yet secure. Most of these proposals are
presented by programmers on their own, or small programming
teams. Others are proposed (sometimes by researchers) and
never get to be implemented. Finally, others are publicly
presented by researchers and/or backed by companies, like the
one we focus on in this paper. Unfortunately there is no such
thing as a CAPTCHA design guideline, apart from some basics
( [1], [12]), and it is not uncommon to notice some recurrent
design flaws in most of them.

In this article we introduce the Capy CAPTCHA, and
proceed to analyze it from an attacker’s poing of view. We

present a side-channel attack that does not try to solve neither
of the Artificial Intelligence problems used as a foundation for
the CAPTCHA: it does not solve either the image recognition
problem or the shape recognition problem in which the strength
of this CAPTCHA is based. The proposed attack is a very low
cost one, easy to implement by any attacker.

The structure of the paper is as follows. Section II presents
Capy CAPTCHA, analyzing it from an attacker point of view.
Next, in section III we present the rationale of our attack based
on the found vulnerabilities and the attack in detail. After,
section IV shows the preliminary results. Finally, conclusions
are outlined, including some reflexions about the posibility to
use our attack with other image-based CAPTCHAs that could
be vulnerable to it.

II. CAPY CAPTCHA

In this section we describe the general features and design
structure of Capy in order to understand the proposed attack.

A. General Features

Capy CAPTCHA started in 2010 as an academic research
project at Kyoto University and turned into a company in 2012.
It has been quite well praised both in awards and in the press.

In the Capy web-page, their authors offer several types
of CAPTCHA that basically fall into two categories: puzzle
CAPTCHAs and text CAPTCHAs. We will focus on the first
one, which is the truly innovative proposal, and not on the
second. Many works have been done previously on text-based
CAPTCHAs, and most, if not all can be considered either
susceptible to attack or too difficult to solve even for humans.
In the rest of this paper, when we refer to the Capy CAPTCHA,
we will implicitly mean the Capy puzzle type. Capy works by
creating a simple puzzle, one in which there is only one piece
to place into an image (Fig. 1). The user should drag and drop
the puzzle piece into the correct location within the challenge
image.

It so appears that the Capy designers have put some effort
into its security. For instance, the puzzle void within the
challenge image is not filled with just a random color; instead
it is filled with a portion from another image. Not only that, in
some (but not all) of the challenges, the other image has a color
and texture similar to the challenge image and puzzle piece.
According to Capy designers “[it] contains complicated details,
edges and other factors which prevent bots from cracking the
code”1.

1Retrieved from http://www.capy.me/demo_puzzle, on June 14th 2014.



Figure 1: Puzzle CAPTCHA by Capy.

In the production version that appears on the Capy web-
page, only one puzzle piece is present in each image. Nev-
ertheless, in a video presentation of their idea, they show the
possibility of more than a single puzzle piece per image. But
we will focus on the production version.

B. Design analysis

Capy presents an image of 400×267 pixels, the challenge
image, and a puzzle piece of approximately 76× 87 pixels -
this size might vary as the puzzle piece shape can change.

The solution space is thus roughly 400−76×267−87 =
58.320 possible answers (possible positions), and with no fur-
ther information, will provide a security of 1

58.320 = 0,0017%
against a random (brute force) attack. This is a decent result,
strong enough for a CAPTCHA.

Unfortunately, after playing with this CAPTCHA, the first
important design flaw was evident: the puzzle piece only
moves in discrete 10-pixels steps. This means a brute force
attack would have a chance of 1

400−76
10 × 267−87

10
≈ 1

32×18 ≈ 0,173%
success against it.

This is a weak design idea, that makes the CAPTCHA
much more susceptible to attacks. The major problem with
this design decision is that it opens the door to other attacks
with a noticeable difference between a correct solution and a
solution 10 pixels away from it (and not just 1 pixel away).

We have used an HTTP protocol analysis tool to understand
and replicate the communications of the JavaScript client
scripts with the Capy CAPTCHA server. In this phase, we
learned that the communication protocol sends all the positions
through which the piece travels while being dragged. They are
encoded in base 32, adding the character x for separation, and
are sent to the server as a string. For example, one possible
solution string would be

ax8exax84xax7qxkx7gxkx76xkx...ixax1ixkx18x

This would allow them to further examine the solution sent
once in their servers, detecting whether this pointer (mouse,
finger) movement corresponds to a human, and thus enhance

the human/bot discrimination. However, after some playing
with the CAPTCHA, we detected that this is not the case.
Capy CAPTCHA does not accept us to send only the final
puzzle piece position, returning False (test not passed) if we
just sent it. While playing with the CAPTCHA, we noticed
that reducing the drag log size (jumping over positions) did
not seem to affect its marking. Finally, we learned that sending
just two positions, the initial one (always the same) and the
final position (where the puzzle piece goes) gets True (test
passed) marks every time the solution position was correct.

Capy CAPTCHA is not using this information to further
discriminate humans and bots, maybe using some ML clus-
tering algorithm would help to improve it. We think that not
trying to take advantage of this information is also a minor
weakness in its design.

III. THE SIDE-CHANNEL ATTACK PROPOSAL

One fundamental property of the correct solutions to the
challenges of this CAPTCHA is that the resulting images are
complete and more natural, in the sense that both colours and
shapes are more continuous. Compared to the challenge image,
the solution image has more color and structure repetition.

When the puzzle piece void is covered with the puzzle
piece missing from the image, the resulting image is better in
terms of continuity - shapes around the puzzle figure are more
continuous, as are colours and textures (shape repetitions).

A. JPEG

This crucial property of the correct solution leads us
to think in the JPEG compression algorithm, that we will
introduce now. To better understand our attack, it is important
to understand how the JPEG baseline algorithm compresses
the images, and thus what makes one image more compressible
than another.

The Joint Picture Experts Group (JPEG) is an ISO com-
bined committee established in 1987, product of the join of two
research groups working in compression and transmission of
images (a group from the CCITT, and the PEG from ISO). The
result, the JPEG standard, is a toolkit of image compression
techniques, that might be tailored and adjusted to the needs
of the user [8]. JPEG is also primarily a lossy method of
compression, not as other compressors like RLE, LZW, or
formats like BMP, GIF, etc.

Lossy compression schemes throw not important data away
during encoding. JPEG was designed specifically to discard in-
formation that the human eye cannot easily see. As an example,
small changes in intensity (light vs. dark) are perceived better
than similar changes in colour. That is why JPEG is more lossy
when encoding colour.

One important aspect is that JPEG was designed to com-
press continuous-tone images of real-world subjects: pho-
tographs, video stills, or anything resembling natural subjects.
Black and white documents, line art, etc. do not get the best
results after JPEG compression, with visible artifacts.

Another important aspect is that the user can tune the
quality of the JPEG encoder using a parameter called the



quality setting, typically variable between 1 and 100, 1 given
the biggest compression but worst quality.

JPEG defines a baseline or minimal subset of the standard
that any JPEG implementation should include. The baseline
uses an encoding scheme based on the Discrete Cosine Trans-
form (DCT) as a compression step. The JPEG compression
algorithm is divided into the following steps:

• transform the original image into a colour space that
separates luminosity from chrominance, and is best
suit for the following steps

• downsample chrominance by averaging groups of ad-
jacent pixels

• apply the DCT to blocks of pixels, in each channel
(luminance, chrominance)

• quantize each block of DCT coefficients using tables
optimized for the human eye

• encode the resulting coefficients using a Huffman
variable length algorithm

Key to understand how JPEG works is to understand the
DCT. After the data is divided in blocks of 8×8 pixels, DCT
converts the spatial image representation into a frequency map:
the low-order terms represent the average colour in the block,
where the successive higher order terms represent the strength
of more and more rapid changes across the width or height of
the block (Figure 2). The highest term represents the strength
of a cosine wave alternating from maximum to minimum at
adjacent pixels. After this computationally intensive step, we
obtain the coefficients of each frequency, for the block.

Figure 2: Representation of plane-waves for each DCT coef-
ficient.

Once we have these coefficients, we represent them with
less than complete accuracy. This is the quantization step.
Basically, we choose a quantization table, which has a value for
each position of the 8×8 frequency coefficients. We calculate
the integer division of each coefficient by the corresponding
value in the table. The higher-end terms are quantized more
heavily than the lower terms, thus giving more importance
to main color than to sudden changes. This is so because
human vision is much more sensitive to small variations over
large areas than to high-frequency brightness variations, so
magnitudes of the high-frequency components are stored with
a lower accuracy. At the end of this process, we need less bits
to represent these resulting coefficients, so we are compressing
the bitstream.

Separate quantization tables are used for luminance and
chrominance data. Also, the tables used depend on the quality

setting that the user chooses (higher compression meaning
tables with bigger values). The ISO JPEG committee devel-
oped some tables, on which other groups have worked. The
quantization table chosen for a particular image is saved in the
bitstream, so the JPEG decompressor just reads it for every
image.

The final bitstream, or resulting data from each block, run
in a zig-zag order, is compressed with a lossless algorithm (a
variant of a Huffman encoding).

The important aspect for us is that for JPEG, both light
pattern regularity (texture) and colour pattern regularity play a
major role in the size of the resulting compressed image. If an
image is very regular in the sense that there is small variation
in adjacent pixels, and the variation is somehow previsible,
DCT and Huffman will work perfectly towards compressing
it. If, in the other end, an image is random noise, JPEG will
fail to compress it much, while loosing quality in the process.

As we recall from earlier, a fundamental property of the
correct solutions to the challenges of this CAPTCHA is that
the resulting images are complete and more natural, in the
sense that both colours and shapes, are more continuous. This
is so because the puzzle piece in the correct position brings
the image back to its original, which will typically have less
high-frequency information than the same image with one part
abruptly substituted by another image.

For this reason, we will choose the image that, once
compressed, uses the smallest size. Surprisingly, we will not
need to use any other information from the image.

B. Attack proposal

We have created a program in Python that downloads a
challenge, composed of the challenge image (that includes a
portion of another image inside with the shape of the puzzle
piece) and the puzzle piece. They are embedded together in
the same PNG image. Our program, once the challenge is
downloaded, tries to find the correct answer by placing the
puzzle piece in all possible locations (within the 10×10 step
grid), and for each resulting image, computing its size once
compressed using JPEG. The image that has a smaller size
will be considered the correct one, and thus that position of
the puzzle piece will be sent to the Capy server as our answer,
as the second and final position in the movement log.

The Capy server returns in turn an HTML answer including
True only in the case that the correct position was sent. We
log the response image sent (with the puzzle piece in the
guessed position), the position itself (as x, y coordinates), the
answer from the Capy server (that tells us if the answer was
correct or not), and other details. We programmed it using
the PIL Image Library of the Python language for image
manipulation and compression, including the merge of the
puzzle piece into the background, and the computation of the
JPEG algorithm. We also used the libraries httplib and urllib2
for HTTP communications with the Capy CAPTCHA server.

IV. EXPERIMENTAL RESULTS

Our initial estimation while designing this attack was that,
in a good case scenario, using just this JPEG-size discrimi-
nation, we would be able to break Capy CAPTCHA with an



estimated success ratio of over 3% to maybe 5%. We thought
that several problems, such as partial puzzle piece overlapping
(thus reducing the image size with JPEG compression), small
size variation (images in which the image chosen to fill in
the puzzle void piece was already in harmony of colour and
texture with the background) and others would prevent this
attack from getting a better result. We planned for this to be
the first stage of an attack, later improved with some additional
information extracted from the images.

As the JPEG image file size is dependent on the quality
setting (that in turn affects the lossy compression algorithm),
at first we performed our attack with different compression
(quality) settings to discover for which one it seemed to have
a better success ratio. As it takes on average 4.33 seconds
to download a Capy challenge, we performed this test only
for 200 challenges in each quality setting. We performed an
exhaustive search, using all quality settings from 10 to 100 in
steps of 10.

After 4:42 hours, we obtained the results in Fig. 3, that de-
picts the success ratio of the attack (number of correctly solved
challenges, in percentage) depending on the JPEG compression
quality ratio (setting from 10 to 100, the maximum). The
dashed line is the second-grade approximation. Even though
the relation between a JPEG quality setting and the success
ratio is not linear, it is clear that there is a tendency to improve
the success ratio of the attack if we use a higher JPEG quality
setting. The maximum quality (minimum compression) was
the one able to differentiate the correct solution best, with a
61.5% success ratio for these 200 experiments.

Figure 3: Success ratio by JPEG compression quality.

A. Results analysis

It is interesting to observe where our basic attack succeeds
and where it fails, to better understand why it works so well,
as well as figure out ways to make it work worse, making the
CAPTCHA more resilient.

In table I we present some cases of failed solutions to
the challenges. The first one (city at night) is particularly

interesting: the puzzle void in the background has been filled
with an almost plain colour, one that happens to appear
frequently in the background picture. The puzzle piece has
two differentiated parts, the bigger one also a low-detail one.
Our algorithm finds that putting this piece on top of a high-
detailed part of the background produces a smaller image (less
information) than if we put it in its correct place. The reason
for this is that the algorithm is basically erasing high frequency
(detailed) information. In the other challenges, we appreciate
similar patterns: covering high detail parts of the background
picture renders smaller images.

Table I: Wrongly solved challenges.

After examining carefully other results, we note that this
behaviour typically happens when the pattern/colour used for
filling the void is a low frequency one (plain colour, with
little changes). It also adds to it when the puzzle piece taken
from the image does not contain many details (high frequency
image data), but some parts of the challenge image do, and
in high concentrations. Thus, images with both areas of very
high detail and very low detail are more prone to this. This
gives us a possible way to enhance the security of these types
of CAPTCHAs, as we will discuss in section V-B.

V. POSSIBLE MITIGATION MEASSURES

In this section we discuss possible ways to enhance the
security of the Capy CAPTCHA, and similar CAPTCHAs
based on puzzles, or some kind of challenge based on image
recomposition.

First, we comment the possibilities of using a broader
solution space, thus making it more resilient to brute force
attack. Next, we present how to use our attack to filter out
weak challenges, and discuss its possible drawbacks. Then we
comment the benefits (and proper ways) to present a bigger
image library, thus trying to avoid attacks that, once a particular
challenge is solved, can recognize and solve it again. Finally,
we analyze whether adding puzzle pieces (instead of just
one) might or not be a proper solution to strengthen these
CAPTCHAs.

A. Broader solution space

One possible solution we might think about would be to
enlarge the solution space, and approximate it to the maximum



possible, given the dimensions of the background image (a
width×height solution space). The drawback is that this would
make it much harder to be solved by humans, as placing the
puzzle image exactly in its position is not an easy task with a
mouse nor with a finger in a touch device.

One might think that we can check, once in the Capy server,
that the solution given is close enough to the perfect solution,
within a distance. The problem with this idea is that once
the attacker determines that a x-pixel distance to the correct
solution is accepted, then again, she can create a grid in x-pixel
steps and try only those solutions.

A bigger image, and a smaller allowed distance to the cor-
rect solution, would force the attacker to try more positions, at
least making the attack a bit more expensive in computational
resources.

B. Challenge pre-filtering

As our attack does not correctly solve all the challenges
presented, the Capy designers can use this to pre-filter the
challenges served by their server, that is: offer only those
challenges that are not solved by this attack. Note that this
will not require a major modification to their CAPTCHA, and
would make it resilient to our attack.

The negative point of this solution is that it will make it
resilient to the attack we present here, but only to this particular
attack.

Another type of pre-filtering is possible, this time, based
on selecting images with very differentiated areas in terms of
detail level. Also, when the puzzle piece void to be filled comes
from an image that has similar patterns and colours to the real
puzzle piece, and little detail (low frequencies). It also helps if
we pick up a piece of the image with low detail for the puzzle
piece. In section IV-A we learnt that we can, for instance fill
the puzzle void in the background challenge with portions of
the same image (with little detail), so colours and textures are
alike.

These countermeasures might not only be able to prevent
the attack we present here, but possibly other attacks based on
image continuity. The problem with this is that the resulting
CAPTCHA might then not be as user friendly, and a study
on usability would be indicated in case of using this filtering
measure. Also, tt remains to be seen if these filters would
render the CAPTCHA weaker against other types of attacks.

C. Bigger image library

Having a small image library for the backgrounds of the
challenges is a major problem. Here, the meaning of small
is any number that we can download, store and analyze
programmatically with a computer. Instead, what we need is
a really large number of possible backgrounds, at least from
the point of view of a computer algorithm.

Using a much larger image library, and also using some
image distortion algorithms so the images are not pixel-per-
pixel similar (in a way that the distortion is impossible for any
other algorithm to undo, even if given several samples of the
same image once distorted) may also help.

D. Several puzzle pieces

It is possible to argue that the idea mentioned by Capy
designers of using more than one puzzle piece at a time for
a single challenge might improve its security. This will be
very possibly the case, but remains to be seen to what extent.
For example, if just placing one puzzle piece (of, say, three
pieces) in its correct position gives the correct properties to
the resulting image - which in the case of our attack can
be described as continuity, then the attack can solve first one
piece, then the second, then the third. If the general success
ratio of the attack is X%, the three-piece success rate would be
X3

106 %. For example, for our basic attack with a success ratio
of 65.1%, for a three piece puzzle it would solve it 27.5% of
the time, being still a very successful attack.

VI. CONCLUSIONS

The Capy CAPTCHA, although seemingly well designed,
user friendly, and praised by press and prices, presents im-
portant design weaknesses. They are so important that they
completely compromise its security.

We have presented a low-cost, side-channel attack that is
easy to be implemented, and that is able to break (bypass)
this CAPTCHA with a 61% success ratio. We find thus that a
simple metric is able to correctly classify the solutions to this
CAPTCHA.

Capy CAPTCHA is a great CAPTCHA in terms of us-
ability. Unfortunately, that usability is related to some extent
to some weak design decisions, that render the CAPTCHA
extremely weak against attacks like the one presented here. It is
not straightforward to improve the security of this CAPTCHA.

We feel that this low-cost attack, with minor modifica-
tions, will be able to bypass some other image recomposition
CAPTCHAs or puzzle CAPTCHAs that use the same puzzle
ideas - although in slightly different ways. Among these are
KeyCAPTCHA and the Garb CAPTCHA. We look forward to
examining the security of those CAPTCHAs, and extend our
experiments to them to validate this possibility.
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